Name: ENVIRONMENTAL PHYSICS
Code: 518102009
Type: Compulsory
ECTS: 4.5
Length of subject: Per term
Semester and course: 2nd Year - Second term
Speciality:
Language: English
Mode of study: On-site class
Lecturer data: ACOSTA AVILÉS, JOSÉ ALBERTO
Knowledge area: Ingeniería Agroforestal
Department: Ingeniería Agronómica
Telephone: 968325667
Email: ja.acosta@upct.es
Office hours and location:
martes - 15:00 / 17:00
EDIFICIO DE ETSI AGRONÓMICA, planta 2, Despacho 2.44
jueves - 10:00 / 12:00
EDIFICIO DE ETSI AGRONÓMICA, planta 2, Despacho 2.44
Qualifications/Degrees:
PhD in . from Technical University of Cartagena (SPAIN) - 2008
Academic rank in UPCT: Catedrático de Universidad
Number of five-year periods: 2
Number of six-year periods: 3 de investigación
Curriculum Vitae: Full Profile
Lecturer data: GALLEGO ELVIRA, BELÉN
Knowledge area: Ingeniería Agroforestal
Department: Ingeniería Agronómica
Telephone: 968177741
Email: belen.gallego@upct.es
Office hours and location:
miércoles - 09:30 / 19:30
EDIFICIO DE ETSI AGRONÓMICA, planta 2, Despacho 2.1
Tutorials will by carried out by request of the student sending a mail to belen.gallego@upct.es
Qualifications/Degrees:
PhD en Doctorado Europeo en la Universidad Politécnica de Cartagena (ESPAÑA) - 2011
Academic rank in UPCT: Profesora Titular de Universidad
Number of five-year periods: 1
Number of six-year periods: 2 de investigación
Curriculum Vitae: Full Profile
[CB1 ]. Students are required to show they possess and understand knowledge in an area of study that starts from the base of general secondary education, and that they are at a level which includes aspects that imply knowledge coming from the forefront of their field of study.
[CB4 ]. Students are required to transmit information, ideas, problems and solutions to a specialized and non-specialized audience.
[TG2 ]. Adequate knowledge about physical problems, technologies, machinery and systems for water and energy supply, about the limits imposed by budgetary factors and constructive regulations, and the relationships between facilities or buildings and agricultural holdings, agri-food industries and spaces related to gardening and landscaping with their social and environmental situation, as well as the need to relate those and such environment with human needs and the preservation of the environment.
[TG9 ]. Capacity for leadership, communication and transmission of knowledge, skills and abilities in the social spheres of action.
[FB5 ]. Understanding and mastery of the basic concepts of the general laws of mechanics, thermodynamics, fields, waves and electromagnetism and their application to the resolution of engineering problems.
[RA10 ]. Ability to learn about, understand and use the principles of technology transfer, and to understand, interpret, communicate and adopt advances in the field of agriculture.
[RA9 ]. Ability to learn about, understand and use the principles of decision making by using the resources available for work in multidisciplinary groups.
[T1 ]. Effective written or spoken communication
El estudiante deberá:
Describir los mecanismos que rigen la formación del clima, así como conocer las características de la atmósfera.
Definir y calcular las variables que describen el estado de aire de la atmósfera y su interacción con los cultivos.
Comprender y aplicar las leyes que rigen la transferencia de energía por radiación y su interacción con los cultivos.
Identificar los principales aparatos de medida de las variables medioambientales usados en agricultura, conocer su funcionamiento y sus aplicaciones.
Definir los principios físicos que rigen los intercambios de energía y de masa entre las capas bajas de la atmósfera, la vegetación y las capas superiores del suelo.
Conocer los procesos, componentes y aplicaciones de la teledetección aplicada a la agricultura.
Adquirir, analizar e interpretar datos climáticos de estaciones meteorológicas (radiación PAR, neta y solar global, velocidad y dirección del viento, temperatura y humedad del aire, temperatura de superficie, etc.).
BLOQUE TEMÁTICO I. Bases de la formación del clima: la atmósfera. Variables de estado del aire. Radiación: leyes y conceptos. Radiación onda corta. Radiación de onda larga. Radiación neta. BLOQUE TEMÁTICO II. Medida de factores medioambientales: temperatura, humedad, componentes de la radiación, velocidad y dirección del viento, concentración de CO2, evapotranspiración. BLOQUE TEMÁTICO III. Procesos de transferencia de energía y de masa en las superficies terrestres: procesos de transferencia de energía y de masa. Flujos de calor y de masa entre el suelo/vegetación y atmósfera. BLOQUE TEMÁTICO IV. Seguimiento de la vegetación por teledetección. Procesos, componentes y aplicaciones.
Unit I. The bases of climate formation
Lesson 1. Atmosphere: composition and structure
Lesson 2. The state variables of moist air
Lesson 3. Calculation of the state variables of moist air
Lesson 4. Radiation. Laws and basic concepts (I)
Lesson 5. Radiation. Laws and basic concepts (II)
Lesson 6. The solar radiation
Lesson 7. Longwave radiation
Lesson 8. Net radiation
UNIT II. MEASUREMENTS OF CLIMATE VARIABLES
Lesson 9. Measurement of temperature and humidity.
Lesson 10. Measurement of CO2 concentration and wind.
Lesson 11. Measurement of radiation using thermal and quantum sensors.
Unit III. Energy and mass transfer processes and environmental applications
Lesson 12. Energy transfer processes and environmental applications
Lesson 13. Mass transfer processes and environmental applications
UNIT IV. VEGETATION MONITORING AND REMOTE SENSING
Lesson 14. Remote sensing: processes
Lesson 15. Remote sensing: components
Lesson 16. Remote sensing: applications
Prácticas de laboratorio
Practice 1. Calculation of state variable of moist air (I) Practice 2. Calculation of state variable of moist air (I) Practice 3. Evaluation of the influence of solar panel slope in the transmission of solar radiation. Practice 4. Calculation of potential evapotranspiration, ETo Practice 5. Study of variation of relative humidity and temperature in different environmental conditions. Practice 6. Effect of CO2 and vegetation in the variation of the temperature in sealed chambers. Practice 7. Data acquisition with a CAMPBEL: global solar radiation, surface temperature. Practice 8. Data acquisition with a CAMPBELL: net radiation, global solar radiation, and wind speed. Practice 9. Determination of photosynthetically active radiation (PAR) and light from different light sources. Practice 10. Heat transfer by conduction in different types of soil.
Promoting the continuous improvement of working and study conditions of the entire university community is one the basic principles and goals of the Universidad Politécnica de Cartagena. Such commitment to prevention and the responsibilities arising from it concern all realms of the university: governing bodies, management team, teaching and research staff, administrative and service staff and students. The UPCT Service of Occupational Hazards (Servicio de Prevención de Riesgos Laborales de la UPCT) has published a "Risk Prevention Manual for new students" (Manual de acogida al estudiante en materia de prevención de riesgos), which may be downloaded from the e-learning platform ("Aula Virtual"), with instructions and recommendations on how to act properly, from the point of view of prevention (safety, ergonomics, etc.), when developing any type of activity at the University. You will also find recommendations on how to proceed in an emergency or if an incident occurs. Particularly when carrying out training practices in laboratories, workshops or field work, you must follow all your teacher's instructions, because he/she is the person responsible for your safety and health during practice performance. Feel free to ask any questions you may have and do not put your safety or that of your classmates at risk.
No se han establecido requisitos previos. Sin embargo, se recomienda haber cursado con anterioridad aquellas asignaturas de la titulación que, por sus contenidos y por su situación en el plan de estudios, aportan conocimientos básicos necesarios como Fundamentos Físicos de la Ingeniería y Matemáticas e Informática. La asignatura de Física Ambiental está también relacionada con las asignaturas de Geología, Edafología y Climatología, Fitotecnia, Hidrología y Ciencia y Tecnología del Medioambiente.
Class in conventional classroom: theory, problems, case studies, seminars, etc
Presentation of theory material and problem resolution
26
100
Class in laboratory: practical classes / internships
Laboratory practices
15
100
Assessment activities (continuous assessment system)
Continuous evaluation exams, delivery of practical cases and practice reports
4
100
Assessment activities (final assessment system)
Continuous evaluation exams, delivery of practical cases and practice reports
6
100
Tutorials
Tutorials of the subject contents
5
100
Student work: study or individual or group work
Study of the subject, preparation of practical reports and resolution of practical cases
79
0
Individual official test
Two partial written exams of continuous evaluation:
First partial: resolution of 4-5 problems of the Unit I. This exam will be evaluated according to 0-10 points, and will be 40% of the final grade of the subject. A minimum grade of 4 points are needed to average with the rest of parts of the evaluation system.
Second partial: resolution of 40 questions of a multichose test with 4 possible options of the lessons from 1 to 16. This exam will be evaluated from 0-10 points, and will be 40% of the final grade of the subject. A minimum grade of 4 points are needed to average with the rest of parts of the evaluation system.
80 %
Evaluation of practical sessions, visits and seminars based on reports and corresponding documents
Presentation of practice reports both individual as a group.
15 %
Solving of cases, theoretical questions, practical exercises or problems given by the teaching staff
A practical case will be proposed to each student on applied aspects of the subject, having to present the corresponding report for its evaluation.
5 %
Individual official test
Two partial written exams of continuous evaluation:
First partial: resolution of 4-5 problems of the Unit I. This exam will be evaluated according to 0-10 points, and will be 40% of the final grade of the subject. A minimum grade of 4 points are needed to average with the rest of parts of the evaluation system.
Second partial: resolution of 40 questions of a multichose test with 4 possible options of the lessons from 1 to 16. This exam will be evaluated from 0-10 points, and will be 40% of the final grade of the subject. A minimum grade of 4 points are needed to average with the rest of parts of the evaluation system.
80 %
Evaluation of practical sessions, visits and seminars based on reports and corresponding documents
Presentation of practice reports both individual as a group.
15 %
Solving of cases, theoretical questions, practical exercises or problems given by the teaching staff
A practical case will be proposed to each student on applied aspects of the subject, having to present the corresponding report for its evaluation.
5 %
Author: Guyot, G.
Title: Physics of the environment and climate
Editorial: John Wiley & Sons
Publication Date: 1998
ISBN: 0471968188
Author: Monteith, John L.
Title: Principles of environmental physics
Editorial: Academic Press,
Publication Date: 2013
ISBN: 9780123869937
Author: Mavi, Harpal S.
Title: Agrometeorology principles and applications of climate studies in agriculture
Editorial: Food Pruducts
Publication Date: 2004
ISBN: 1560229721
A copy of the lessons taught in class will be available in the Virtual Classroom (Moodle platform), as well as the topics covered in seminars, laboratory practices, as well as other resources that are recommended to students.