Name: FOOD ENGINEERING OPERATIONS
Code: 518103016
Type: Elective
ECTS: 6
Length of subject: Per term
Semester and course: 3rd Year - First term
Speciality: Mención en Industrias Agroalimentarias
Language: English
Mode of study: On-site class
Lecturer data: CASTILLEJO MONTOYA, NOELIA
Knowledge area: Tecnología de Alimentos
Department: Ingeniería Agronómica
Telephone:
Email: noelia.castillejo@upct.es
Office hours and location:
Qualifications/Degrees:
Academic rank in UPCT: Profesora Distinguido
Number of five-year periods: Not applicable due to the type of teaching figure
Number of six-year periods: No procede por el tipo de figura docente
Curriculum Vitae: Full Profile
Responsible for the groups: G2
Lecturer data: ZAPATA ARRÁEZ, ROSA
Knowledge area: Tecnología de Alimentos
Department: Ingeniería Agronómica
Telephone:
Email: rosa.zapata@upct.es
Office hours and location:
Qualifications/Degrees:
Academic rank in UPCT: Investigadora Fpu
Number of five-year periods: Not applicable due to the type of teaching figure
Number of six-year periods: No procede por el tipo de figura docente
Curriculum Vitae: Full Profile
[CB1 ]. Students are required to show they possess and understand knowledge in an area of study that starts from the base of general secondary education, and that they are at a level which includes aspects that imply knowledge coming from the forefront of their field of study.
[CB2 ]. Students are required to be able to apply their knowledge to their job or vocation in a professional manner, and to possess the skills that are usually demonstrated through the elaboration and defense of arguments and the resolution of problems within their area of study.
[TG8 ]. Ability to solve problems with creativity, initiative, methodology and critical reasoning.
[FB1 ]. TO_TRANSLATE: Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos, algorítmica numérica; estadística y optimización.
[FB3 ]. TO_TRANSLATE: Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería.
[FB4 ]. Basic knowledge of general chemistry, organic and inorganic chemistry and their applications in engineering.
[FB5 ]. Understanding and mastery of the basic concepts of the general laws of mechanics, thermodynamics, fields, waves and electromagnetism and their application to the resolution of engineering problems.
[RA10 ]. Ability to learn about, understand and use the principles of technology transfer, and to understand, interpret, communicate and adopt advances in the field of agriculture.
[RA9 ]. Ability to learn about, understand and use the principles of decision making by using the resources available for work in multidisciplinary groups.
Se trata de una asignatura optativa de la titulación pero que tiene carácter obligatorio para la obtención de la Mención en Industrias Agroalimentarias. Las competencias del Módulo de Tecnología Específica de Industrias Agrarias y Alimentarias (ver Orden CIN/323/2009 de 9 de febrero) a adquirir son:
IAA1. Capacidad para conocer, comprender y utilizar los principios de: Ingeniería y tecnología de los alimentos.
IAA2. Capacidad para conocer, comprender y utilizar los principios de: Ingeniería y operaciones básicas de alimentos. Tecnología de alimentos. Procesos en las industrias agroalimentarias. Modelización y optimización.
IAA4. Capacidad para conocer, comprender y utilizar los principios de: Ingeniería de las industrias agroalimentarias
IAA5. Capacidad para conocer, comprender y utilizar los principios de: Equipos y maquinarias auxiliares de la industria agroalimentaria. Automatización y control de procesos. Ingeniería de las obras e instalaciones. Construcciones agroindustriales. Gestión y aprovechamiento de residuos.
Es recomendable haber superado las asignaturas Matemáticas e Informática, Física y Química. Se adoptarán medidas especiales para que los alumnos que no puedan asistir, por motivos justificados, de forma regular a clase sean capaces de adquirir las competencias tanto específicas como transversales de esta asignatura.
En relación con la lengua en que se imparte la asignatura:
La asignatura se imparte siempre en castellano, que es la lengua vehicular del título
Adicionalmente, podrá ofertarse un grupo para ser impartida también en inglés
La oferta final del grupo en inglés estará condicionada al número mínimo que en cada momento pueda fijar la UPCT
La participación en el grupo con docencia en inglés es voluntaria y elegida por el alumno antes del inicio del curso
Cada curso, con antelación suficiente al período de matrícula se informará sobre las lenguas en que se imparte, sobre el nivel de idioma que se emplea en la asignatura y de los requisitos que, en su caso, hayan de cumplirse para poder cursarla en el grupo de idioma inglés
[T5 ]. Applying knowledge to practice
El estudiante deberá ser capaz de integrar conocimientos, capacidades y recursos disponibles para abordar situaciones nuevas o complejas, por lo que deberá:
1.- Describir los fundamentos de las operaciones básicas de la ingeniería de alimentos.
2.- Identificar las diferentes operaciones unitarias que se presentan en cualquier proceso de elaboración de alimentos.
3.- Comprender el fundamento teórico que rigen las operaciones unitarias.
4.- Aplicar los modelos matemáticos basados en balances de materia y energía al análisis de una operación unitaria.
5.- Reconocer los principios de funcionamiento de los diferentes equipos implicados en operaciones de transferencia de materia y calor utilizados en la industria agroalimentaria.
- Introducción (Bases de conservación de alimentos. Las Operaciones Básicas) - Transferencia de materia y energía (Fenómenos de transporte. Balances macroscópicos de materia y energía) - Transporte de fluidos (Reología. Circulación de fluidos por tuberías) - Transferencia de calor (Fundamentos. Transferencia de calor por conducción, convección y radiación) - Operaciones Básicas basadas en la transferencia de calor. Intercambiadores de calor. Calentamiento/Enfriamiento en tanques con agitación
Introducción
Tema 1.- Introducción a las bases de conservación de alimentos
Tema 2.- Evolución histórica. Métodos industriales de conservación y elaboración de alimentos
Tema 3.- Introducción a las operaciones básicas de la ingeniería de alimentos
Tema 4.- Las operaciones básicas de la ingeniería de alimentos
Tema 5.- Sistemas de unidades y análisis dimensional
Transferencia de materia y energía
Tema 6.- Fenómenos de transporte y sus mecanismos
Tema 7.- Balances macroscópicos de materia
Tema 8.- Balances macroscópicos de energía
Transporte de fluidos
Tema 9.- Reología.
Tema 10.- Transporte de fluidos por tuberías.
Operaciones basadas en la transferencia de calor
Tema 15.- Calentamiento/Enfriamiento en Intercambiadores de calor.
Tema 16.- Calentamiento/Enfriamiento en tanques agitados
Transferencia de materia y energía
PRÁCTICA 1: Balance de materia en régimen no estacionario. Se realizará un balance de azúcar en un tanque agitado para determinar la evolución del soluto durante el tiempo. 3 h. PRÁCTICA 2: Balance de energía en régimen no estacionario. Se realizará un balance de energía mediante calentamiento de un medio acuoso en un tanque agitado para determinar la evolución de la temperatura durante el tiempo. 4 h.
Transporte de Fluidos
PRÁCTICA 3: Determinación de la densidad de sólidos y líquidos. Determinación en laboratorio de la densidad real y aparente de sólidos particulados y de líquidos. 1 h. PRÁCTICA 4: Medida de la viscosidad en fluidos newtonianos. Determinación en laboratorio de la viscosidad dinámica y cinemática de una solución alimenticia y estudio de la influencia de la concentración de la solución en su viscosidad. 2 h PRÁCTICA 5: Medida de la viscosidad con un viscosímetro de rotación. Elaboración de los reogramas de diferentes fluidos alimentarios mediante un viscosímetro de rotación. Identificación del tipo de fluido según su comportamiento reológico. Estudio de la influencia de la temperatura sobre la viscosidad. 2 h
Transferencia de calor
PRÁCTICA 6: Determinación del coeficiente de transferencia de calor por convección. Determinación experimental del coeficiente de convección en diferentes condiciones. 1 h. PRÁCTICA 7: Intercambiadores de calor. Estudio, mediante una maqueta que reproduce el funcionamiento de un intercambiador de calor tubular, de los diferentes parámetros que caracterizan el comportamiento de estos equipos, así como de su funcionamiento en diferentes condiciones operativas. 2 h.
Promoting the continuous improvement of working and study conditions of the entire university community is one the basic principles and goals of the Universidad Politécnica de Cartagena. Such commitment to prevention and the responsibilities arising from it concern all realms of the university: governing bodies, management team, teaching and research staff, administrative and service staff and students. The UPCT Service of Occupational Hazards (Servicio de Prevención de Riesgos Laborales de la UPCT) has published a "Risk Prevention Manual for new students" (Manual de acogida al estudiante en materia de prevención de riesgos), which may be downloaded from the e-learning platform ("Aula Virtual"), with instructions and recommendations on how to act properly, from the point of view of prevention (safety, ergonomics, etc.), when developing any type of activity at the University. You will also find recommendations on how to proceed in an emergency or if an incident occurs. Particularly when carrying out training practices in laboratories, workshops or field work, you must follow all your teacher's instructions, because he/she is the person responsible for your safety and health during practice performance. Feel free to ask any questions you may have and do not put your safety or that of your classmates at risk.
1.- MATERIAL AND ENERGY TRANSFER
PRACTICE 1: Matter balance in a non-stationary regime. A sugar balance will be carried out in a stirred tank to determine the evolution of the solute over time. 3 h.
PRACTICE 2: Energy balance in a non-stationary regime. An energy balance will be carried out by heating an aqueous medium in a stirred tank to determine the evolution of the temperature over time. 4 h.
2.- TRANSPORT OF FLUIDS
PRACTICE 3: Determination of the density of solids and liquids. Laboratory determination of the real and apparent density of particulate solids and liquids. 1 h.
PRACTICE 4: Measurement of viscosity in Newtonian fluids. Laboratory determination of the dynamic and kinematic viscosity of a food solution and study of the influence of the concentration of the solution on its viscosity. 2 h
PRACTICE 5: Viscosity measurement with a rotational viscometer. Elaboration of the registers of different food fluids by means of a rotation viscometer. Identification of the type of fluid according to its rheological behaviour. Study the influence of temperature on viscosity. 2 h
3.- HEAT TRANSFER
PRACTICE 6: Determination of the convective heat transfer coefficient Experimental determination of the convective coefficient under different conditions. 1 h.
PRACTICE 7: Heat exchangers. Study, by means of a model reproducing the operation of a tubular heat exchanger, of the different parameters that characterise the behaviour of this equipment, as well as its operation under different operating conditions. 2 h.
Attendance at the practicals is compulsory for the corresponding evaluation of the report issued by the student. In the case of non-attendance at a specific placement, the student will not be able to present the report. The average mark for the internship will be weighted according to its duration. In the case of failing the practicals as a whole, the student will be able to take the final exam of the practicals of the course in writing, and on the day of the final exam, by doing a problem or with theoretical questions, whose mark will be the overall mark of the practicals. The mark of the practicals will be kept during the following academic year, in the case that it is necessary for not passing the course.
Class in conventional classroom: theory, problems, case studies, seminars, etc
Classroom lectures: theory, problems, case studies, etc.
45
100
Class in laboratory: practical classes / internships
Laboratory class: practicals
12
100
Assessment activities (continuous assessment system)
Assessment activities (continuous assessment system)
3
100
Assessment activities (final assessment system)
Evaluation activities (final evaluation system)
3
100
Tutorials
Tutorials with students
12
100
Student work: study or individual or group work
estudio de la asignatura
105
0
Individual official test
It will consist of two mid-term exams with the same weight on the final grade. The minimum mark for averaging / keeping until the next exam session of the same academic year / eliminating midterm subjects in the same academic year = 3.0.
70 %
Evaluation of practical sessions, visits and seminars based on reports and corresponding documents
Assessment of practicals on the basis of the corresponding reports. Attendance at the practicals is compulsory for the corresponding evaluation of the report issued by the student. In the case of non-attendance at a given practical course, the student will not be able to present the report on it.
The average mark for each practical will be weighted by its duration in order to obtain the mark for the practicals. In the case of failing the practicals as a whole, the student may take the final exam of the subject's practicals in writing, and on the day of the final exam, by carrying out a problem or with theoretical questions, the mark for which will be the overall mark for the practicals.
The mark for the practicals will be kept for the following academic year, in the event that the student fails the course.
10 %
Solving of cases, theoretical questions, practical exercises or problems given by the teaching staff
Individual resolution of practical exercises or problems proposed by the teacher.
Homework not submitted on time in the virtual classroom will not be assessed.
In the case of failing the assignments of the course as a whole, or if the student wants to get a higher mark, he/she will be able to submit them on the day of the final exam, by doing an additional problem for each partial exam. The mark obtained will be the overall mark for the assignments.
20 %
Individual official test
It will consist of two mid-term exams with the same weight on the final grade. The minimum mark for averaging / keeping until the next exam session of the same academic year / eliminating midterm subjects in the same academic year = 3.0.
70 %
Evaluation of practical sessions, visits and seminars based on reports and corresponding documents
Assessment of practicals on the basis of the corresponding reports. Attendance at the practicals is compulsory for the corresponding evaluation of the report issued by the student. In the case of non-attendance at a given practical course, the student will not be able to present the report on it.
The average mark for each practical will be weighted by its duration in order to obtain the mark for the practicals. In the case of failing the practicals as a whole, the student may take the final exam of the subject's practicals in writing, and on the day of the final exam, by carrying out a problem or with theoretical questions, the mark for which will be the overall mark for the practicals.
The mark for the practicals will be kept for the following academic year, in the event that the student fails the course.
10 %
Solving of cases, theoretical questions, practical exercises or problems given by the teaching staff
Individual resolution of practical exercises or problems proposed by the teacher.
Homework not submitted on time in the virtual classroom will not be assessed.
In the case of failing the assignments of the course as a whole, or if the student wants to get a higher mark, he/she will be able to submit them on the day of the final exam, by doing an additional problem for each partial exam. The mark obtained will be the overall mark for the assignments.
20 %
Author: Heldman, D.R.
Title: Handbook of food engineering
Editorial: Marcel Dekker
Publication Date: 1992
ISBN: 0824784634
Author: Singh, R. Paul
Title: Introduction to food engineering
Editorial: Academic
Publication Date: 2001
ISBN: 9780126463842
Author:
Title: Thermodynamics of Phase Equilibria in Food Engineering /
Editorial:
Publication Date:
ISBN: 9780128115565
Author: Heldman, D.R.
Title: Handbook of food engineering
Editorial: CRC Press
Publication Date: 2019
ISBN: 9781466563124
Author:
Title: Math concepts for food engineering
Editorial: CRC Press
Publication Date: 2008
ISBN: 9781420055054